Multi-objective Optimal Design and Control of Auto-tuned Passive filter using Bacterial Foraging Algorithm to improve Power quality and to minimise Power losses
نویسنده
چکیده
This paper presents a multi-objective optimization algorithm based design and control of harmonic filters in a practical system. The selected system is an interconnected system consisting of nonlinear loads. The harmonics injected by the nonlinear loads are propagated through the system and lead to deteriorated power quality at the terminals of all the connected loads. The proposed methodology is selected such as to minimize total harmonic current and voltage distortion introduced into point of couplings and losses and to improve the source power factor. The optimization of the objectives is achieved with bacterial foraging algorithm. Simulation and experimental results verify the performance of the algorithm.
منابع مشابه
Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملActive Power Filter Design by a Novel Approach of Multi-Objective Optimization
This paper presents an innovative active power filter design method to simultaneously compensate the current harmonics and reactive power of a nonlinear load. The power filter integrates a passive power filter which is a RL low-pass filter placed in series with the load, and an active power filter which comprises an RL in series with an IGBT based voltage source converter. The filter is assumed...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملLong-term Planning of Optimal Placement of Distribution Transformers to Improve Reliability and Power Quality with the Approach of Reducing Costs and Losses
One of the most critical and complex issues in long-term planning of distribution networks is the optimal placement of distribution transformers. In this paper, the optimal placement of distribution transformers was investigated based on a complete and multi-objective function. In the proposed method, location, optimal capacity, and the service area are determined by minimizing costs (investmen...
متن کاملWind Turbine Transformer Optimum Design Assuming a 3D Wound Core
A wind turbine transformer (WTT) is designed using a 3D wound core while the transformer’s total owning cost (TOC) and its inrush current performance realized as the two objective functions in a multi-objective optimization process. Multi-objective genetic algorithm is utilized to derive Pareto optimal solutions. The effects of inrush current improvement on other operating and design parameters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016